
Analytical
 Methods
rsc.li/methods

ISSN 1759-9679

PAPER
R. Augusti et al.
Forensic discrimination between authentic and counterfeit perfumes using 
paper spray mass spectrometry and multivariate supervised classifi cation

Volume 9 Number 34 14 September 2017 Pages 4885–5076

Themed issue: Ambient Mass Spectrometry



Analytical
Methods

PAPER

Pu
bl

is
he

d 
on

 2
9 

M
ay

 2
01

7.
 D

ow
nl

oa
de

d 
on

 0
4/

09
/2

01
7 

13
:1

6:
04

. 

View Article Online
View Journal  | View Issue
Forensic discrimi
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Perfumes are cosmetic products with high added value and worldwide consumption, which make them

a potential target for counterfeiting. A novel, simple and rapid method was developed for the

differentiation of samples of authentic and counterfeit perfumes by employing paper spray mass

spectrometry (PS-MS) combined with multivariate supervised classification models: Partial Least Squares

Discriminant Analysis (PLS-DA) and Soft Independent Modelling of Class Analogies (SIMCA). Samples of

authentic (n ¼ 29, consisting of 10 different brands from several batches and from the same producer)

and seized counterfeit (n ¼ 31) perfumes were analysed by PS-MS in the positive ionization mode and

within a mass range of m/z 150–1000. An initial unsupervised exploratory model (Principal Component

Analysis – PCA) provided a rough visual separation between the two classes. In contrast, PLS-DA and

SIMCA provided good predictions, with low false positive and false negative rates for both models. The

interpretation of informative vectors, i.e. regression coefficients and Variable Importance in Projection

(VIP) scores obtained from the PLS-DA model allowed the detection of diagnostic ions for authentic and

counterfeit samples. Some of the most discriminant ions for counterfeit perfumes were suggested to be

attributed to compounds with allergenic properties.
Introduction

The word perfume is derived from the Latin per fumen. This
term means “through smoke”, because initially perfumes were
manufactured as incense. This denotation also emphasizes the
relevance of volatile compounds to the formation of their
sensorial properties. Besides fragrances, other additives such as
xatives, solvents and antioxidants are also used for their
manufacturing.1

There is historical proof indicating the use of perfumes in
the Middle West, specically in Assyria, since biblical times. In
ancient Egypt, perfumes were associated with religious cere-
monies and also with some distinctive activities of the
Pharaohs. In Greece and Rome, technological improvements
allowed for the fabrication of large amounts of good quality
perfumes. In the Middle Ages, manufacturing techniques
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(extraction, mixture and formulation) were developed by
alchemists for cosmetic andmedicinal applications. Since then,
remarkable industrial innovations have expanded the access to
perfumes throughout the whole world.1

Nowadays, this product has high added value and its
industry moves billions of dollars per year.2,3 For example, the
market for global fragrance, the main input in perfume
production, was estimated to be worth about US$ 38.8 billion in
2017.4 In Brazil, the perfumery and cosmetics segment pre-
sented an average liquid revenue of almost R$ 43 billion (about
US$ 13 billion) in the last few years. Just in taxes, the Brazilian
perfumery segment has moved more than US$ 5 billion in
2015.5 Due to its economic impact, the perfumery industry has
become a potential worldwide target for counterfeiting
practices.

In 2014, Brazil lost about R$ 100 billion (US$ 35 billion) in
injuries caused by such illegal actions.5 In addition to the
nancial losses, some forgery products, such as food, cosmetics
and medicines, represent a risk to consumers' health because
they are not submitted to any quality control. In particular,
counterfeit perfumes can contain toxic and/or allergenic
compounds.6–8 Thus, the large amounts of seized fake samples
reinforce the need for developing analytical techniques that
combine simplicity, reproducibility, efficiency and speed aimed
at identifying such illegal products.
Anal. Methods, 2017, 9, 4979–4987 | 4979
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Some methods based on different analytical techniques for
perfume analysis have been reported. For instance, the quality
control and the quantication of allergens in perfumes have
been established by applying GC-MS (gas chromatography
coupled to mass spectrometry), the most commonly used
technique for the analysis of volatile compounds.9–11 Sensors,
such as olfactory electronic systems (EOS)3 and electronic
noses,2 have also been applied to differentiate between original
and counterfeit perfume samples.

Recently, modern mass spectrometry (MS) methods that
allow for the attainment of specic chemical proles (nger-
prints) have been used as alternatives to separation techniques,
providing the advantages of faster analyses with minimum
sample pre-treatment. Perfume ngerprints can be obtained by
MS techniques based on atmospheric pressure sources, such as
electrospray ionization (ESI-MS),12 easy ambient sonic-spray
ionization (EASI-MS),6 extractive electrospray ionization (EESI-
MS)13 and electrostatic-spray ionization (ESTASI-MS).14

In MS analysis, sample pre-treatment steps (e.g., clean-up
and extractions) are laborious and time-consuming. A prom-
ising alternative to overcome these drawbacks is paper spray, an
ambient ionization method proposed in 2010 by Wang and co-
workers.15 Paper spray mass spectrometry (PS-MS) has been
used for the analysis of complex matrices with simplicity and
low cost. This ionization methodology is highly versatile and
demands minimum sample pre-treatment. PS-MS has been
recently applied to the direct analysis of several complex
samples, such as in the detection of different types of
compounds in biological tissues,16 determination of contami-
nants in foodstuffs,17 quality control of teas,18 examination of
questioned documents,19–21 discrimination among different
bacterial species,22,23 quantication of therapeutic drugs in
blood,24–26 classication of coffees according to their origin,27

monitoring of chemical reactions,28,29 and analysis of samples
of forensic interest.30–32

For most complex samples, PS-MS ngerprints generate
a high amount of multivariate data. The interpretation of this
kind of information can be greatly simplied by the application
of chemometric methods. These methods allow the extraction
of latent information that cannot be evaluated by univariate
analysis. Principal Component Analysis (PCA), an exploratory
and unsupervised classication method, has been the main
approach employed for processing MS data obtained for
perfume analysis.6,12,33 In this type of multivariate method, class
information (for instance, counterfeit or authentic) cannot be
previously incorporated into the model. Thus, unknown
samples can be assigned to a specic group only manually/
visually. On the other hand, supervised methods permit clas-
sication in an automated and more systematic manner, by
validating the model with an independent test set.34

Partial Least Squares Discriminant Analysis (PLS-DA) has
been the most used method for supervised classication in
chemistry. The fundamentals of this method are the simulta-
neous decomposition and the subsequent correlation between
the matrix X that contains the MS data and the class member-
ship vector y, which contains the categorical or dummy vari-
ables (in this work, 0 for counterfeit or 1 for authentic
4980 | Anal. Methods, 2017, 9, 4979–4987
samples).35 Since the predictions provided by PLS-DA are not
exactly the values 1 or 0, a Bayesian threshold should be
established for the decision of class attribution. Finally,
a multivariate analytical validation can be performed for the
developed method by estimating appropriate gures of
merit.36,37

In recent years, some papers have pointed out specic limi-
tations associated with the application of discriminant analysis
(e.g. PLS-DA) to authentication problems and characterization
of counterfeit products (mainly foodstuffs). These suggested
limitations are related to inherent difficulties in obtaining an
adequate number of representative samples for modelling
counterfeit classes, which certainly have an impact on the reli-
ability of predictions and the robustness of the model. Alter-
native classication methods able to overcome this limitation
are denominated one-class (or class modelling) classiers.
Usually, these methods just model the authentic class irre-
spective of the other classes and as such suspect samples are
classied as belonging or not to this specic group. The most
applied method for this purpose is SIMCA, So Independent
Modelling Class Analogies.38,39

The basis of SIMCA relies on the construction of indepen-
dent PCA models for each class of interest, while dening
a condence limit (usually 95%) for the multivariate space
delineated by the scores. Analytical data from unknown
samples are then inserted into the sampling matrix and the
distance between these samples and each clustering class is
used to classify them. This method classies suspect samples as
belonging or not to a determined class. The validation of SIMCA
models is similar to that of other classication methods, being
performed by the calculation of appropriate gures of merit.34,40

In the present work, PS-MS was combined with multivariate
methods of supervised classication (PLS-DA and SIMCA) to
produce a rapid and simple method that is directly applied to
a typical forensic issue, i.e. discrimination between authentic
and counterfeit perfumes. The results from both supervised
models were then compared to provide additional elements on
the discussion of this recent and controversial subject. In
addition, the information arising from the informative vectors
achieved from the PLS-DA model was investigated aiming at the
detection of the main variables (ions) that most contribute to
such discrimination.

Experimental
Materials and samples

HPLC grade methanol was purchased from J. T. Baker Chem-
icals (Center Valley, USA). Chromatographic grade 1 paper was
purchased from Whatman International Ltd. (Maidstone,
England). Isosceles triangle pieces (10 � 5 mm) of this chro-
matographic paper were used as the support for the PS-MS
analysis.

All the authentic perfume samples evaluated herein were
produced by the Boticário Group (São José dos Pinhais, PR,
Brazil). The products from this company are among the main
targets of perfume counterfeiting in Brazil because it is the
largest perfumery and cosmetics franchise in the world, and the
This journal is © The Royal Society of Chemistry 2017



Table 1 Description of the perfume samples analysed by PS-MS

Brand
Brand
codes

Authentic
samples

Counterfeit
samples

Arbo AB 3 2
Egeo dolce ED 3 4
Egeo Woman EW 3 1
Egeo Man EM 3 3
Floratta in blue FB 3 3
Floratta in rose FR 2 2
Malbec MB 3 8
Portinari PT 3 3
Quasar azul QA 3 4
Quasar vermelho QV 3 1
TOTAL 29 31

Fig. 1 Examples of PS(+)-MS fingerprints of the Arbo brand perfumes:
(A) authentic; (B) counterfeit.
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leader of the Brazilian cosmetics market.41 A total of 31 seized
counterfeit perfume samples were provided by the Civil Police
of the State of São Paulo (Brazil). A total of 29 samples of
authentic perfumes (different brands and batches) produced by
the Boticário Group were purchased at local stores, in Belo
Horizonte (Brazil). The samples consisted of the same brands
for the authentic and counterfeit perfumes. Both original and
fake samples were stored in closed asks at ambient tempera-
ture up to the moment of analysis. Table 1 presents the perfume
brands and the number of samples analysed per brand.

PS-MS analysis

PS-MS analyses were performed in the positive ion mode on
a mass spectrometer, Thermo Scientic LCQ Fleet (San Jose,
USA), with an ion trap mass analyser. The following instru-
mental conditions were used: voltage applied to the paper, +4.5
kV; capillary temperature, 275 �C; capillary voltage, 35 V, and
tube lens voltage, 65 V. The mass spectra were acquired in the
full scan mode with a mass range of 150–1000 m/z. Each mass
spectrum presented refers to an average of 30 scans, with each
one requiring 1 s.

The triangular papers were positioned 1.0 cm away from the
entrance of the mass spectrometer. They were supported on
a mobile platform using a metal clip. An aliquot of 10 mL of
perfume was transferred to the central position of the paper and
a volume of 30 mL of methanol was applied with the aid of
a micropipette. In sequence, the voltage source of the mass
spectrometer was turned on to acquire the PS(+)-MS nger-
prints of each perfume. The mass spectra were recorded in
duplicate and in a randomized order.

Data analysis

The mass spectra were processed using the soware Thermo
Scientic Xcalibur 2.1.0 (San Jose, USA). PCA, SIMCA and PLS-
DA models were built using Mathworks MATLAB 7.9.0.529
(Natick, EUA) combined with PLS toolbox 5.2.2 (Eigenvectors
Research Inc., Manson, USA) soware.

For each sample, average MS spectra of the duplicates were
estimated and normalised by the ion intensity. These mass
spectra were arranged in a data matrix X (60 � 851), containing
This journal is © The Royal Society of Chemistry 2017
all the m/z data. This matrix was pre-processed by mean
centering and used to build a PCA model. For the PLS-DA
model, a vector y (60 � 1) was built containing the class attri-
butions (1 for authentic and 0 for counterfeit perfumes). The y
vector was also pre-processed by mean centering. The samples
were divided as following: two thirds for the training set (36)
and one third for the test set (24), using the Kennard–Stone
algorithm for each class.42 The number of latent variables (LV)
for the model was chosen by venetian blinds (6 splits) cross-
validation, based on the smallest cross-validation classica-
tion error (CVCE).

As for PLS-DA, PS(+)-MS data for SIMCA were divided using
the Kennard–Stone algorithm. Hence, the training set was
composed of 19 authentic samples from the 10 brands available
and 17 counterfeit samples. The data were mean centered and
the number of principal components for the authentic class was
chosen based on cross-validation. One-class SIMCA was
employed. The remaining samples were used to assess the
quality of the model. PLS-DA and SIMCA models were validated
by estimating the following qualitative gures of merit: sensi-
tivity (true positive rate), specicity (true negative rate), false
negative rate (FNR), false positive rate (FPR) and reliability rate
(RLR). The area under the receiver characteristic curve (AUROC)
was also calculated for the PLS-DA model.36,37
Results and discussion
PS(+)-MS ngerprints

Preliminary studies working with the negative ion mode
demonstrated poor signal stability. Therefore, all the results
and discussions described in the present manuscript pertain to
measurements carried out by exclusively focusing on the mass
spectra acquired in the positive ion mode. MS proles (nger-
prints) of authentic samples were compared with the respective
Anal. Methods, 2017, 9, 4979–4987 | 4981



Fig. 2 PS(+)-MS fingerprints of the Malbec brand perfume: (A)
authentic; (B–D) three different forgeries.
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counterfeit perfumes. Fig. 1 illustrates the representative mass
spectra of the original and counterfeit perfumes of the brand
Arbo (AB). The differences between these two mass spectra are
clear as the most intense ions in the mass spectra of the
authentic and counterfeit samples do not match.

Hence, in the mass spectrum of the authentic Arbo (AB)
perfume (Fig. 1A), prominent ions ofm/z 223, 239, 313, 371, 496
and 512 are clearly visualized. Moreover, a series of ions sepa-
rated by 44 u in the 600–1000 m/z region is also distinctive in
this mass spectrum. Fig. 1B illustrates the PS(+)-MS of a coun-
terfeit sample of the Arbo perfume. The most important ions in
this mass spectrum are the ones of m/z 157, 215, 349, 391, and
547. Note also the presence of the same series of ions separated
by 44 u in the 600–1000m/z region. Similar comparisons among
the PS(+)-MS ngerprints of authentic and counterfeit perfumes
were performed for all brands (Table 1). Clear differences
among the mass spectra of both types of samples were equally
observed for all the perfume brands. The mass spectra of all
authentic and counterfeit samples are provided in the ESI,
Fig. S1 and S2,† respectively.

The mass spectra of the replicates within the set of samples
of a given authentic perfume brand appear to be quite alike in
spite of the assorted batches analysed (see the Experimental
section for further details). Only minute differences in the
relative intensities of the diagnostic ions could be recognised.
This nding thus exposes the rigidly controlled conditions
employed in all steps involved in the production of the
authentic perfumes and demonstrates that the present meth-
odology can be successfully applied to correctly classify
a suspect sample. In great contrast to the observed mass spectra
of the authentic samples, the PS(+)-MS of the counterfeit
perfumes labelled with the same brand name were quite
dissimilar. This diversity could be due to a high variability in the
manufacturing practices used to produce them, such as
different factories, formulations and inputs, in addition to the
absence of any quality control guidelines. This can be clearly
visualized in Fig. 2 that shows the ngerprints of an authentic
sample (Malbec) and three different fake samples with the same
nominal brand (Fig. 2A–D, respectively).

Considering the high diversity in the MS proles of the
authentic and counterfeit samples, a systematic method that
allows for the unambiguous discrimination between these types
of samples is mandatory. In addition, the selection of potential
markers (ions with distinct m/z values) to diagnose counterfeit
perfumes is also important from the forensic point of view.
Thus, multivariate classication models are presented in the
next section for discriminating authentic and fake samples
encompassing ten different brands (Table 1) from a unique
manufacturer (O Boticário). Broadly speaking, this study is
conducted by modelling the common variance of such
authentic samples in contrast to the usual variance related to
counterfeiting (Fig. S1 and S2†). In spite of the fact that some of
the counterfeit samples can be directly discriminated by simple
spectral comparison, the variability of the fake samples is very
large, including samples whose mass spectra are similar to
those of authentic samples. As is typical for other types of
counterfeit matrices, a broad range of counterfeiting is
4982 | Anal. Methods, 2017, 9, 4979–4987
expected, varying from crude forgeries to high quality fake
samples. Therefore, the use of chemometric methods is neces-
sary for the systematic detection of counterfeit perfumes.
Chemometric analysis

In spite of the advantages of supervised methods, it is always
advisable to previously build an unsupervised PCA model,
searching for natural differences and patterns among samples.34

Thus, a preliminary PCA model was constructed. The rst two
principal components (PCs) accounted for 67.09% of the data
variance. No signicant trend was noted in the remaining PCs.
The scores plot of PC1 versus PC2 (Fig. 3A) shows that PC1 was
not able to discriminate between authentic and counterfeit
samples. However, authentic perfumes (squares) presented
a trend of more negative values on PC2, in comparison with
those of counterfeit samples (circles). It was also observed that
counterfeit samples are more dispersed on PC2 than authentic
samples. This trend corroborates the previous observation indi-
cating a large variety of counterfeiting, including samples very
different (crude forgeries) from and very similar (high quality
This journal is © The Royal Society of Chemistry 2017



Fig. 3 PCA model built from the PS-(+)-MS data obtained for the
perfume samples: (A) scores of PC1 versus PC2; (B) loadings of PC2.
Green circles and red squares represent counterfeit and authentic
perfumes, respectively.
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forgeries) to authentic perfumes. Fig. S3 (ESI†), which displays
the same PC1 � PC2 plot with the sample scores labelled by
brand, indicates that PC1 describes a rough trend of discrimi-
nation of the authentic samples as a function of their brands.

Loadings of PC2 (Fig. 3B) point to the variables that are more
related with each group of samples. The regular series of ions in
Fig. 4 PLS-DA (A) and SIMCA (B) predictions. Authentic (red squares) and
training samples and empty symbols for test samples. The horizontal d
whereas vertical dashed lines indicate the separation between the traini

This journal is © The Royal Society of Chemistry 2017
the range of m/z 600–100 shows positive loadings and is asso-
ciated with positive scores on PC2 (counterfeit perfumes). On
the other hand, the ions of m/z 223, 239, 273, 299, 313, 371, 467
and 575 present negative loadings and are mainly associated
with the authentic samples. Loadings of PC1 (Fig. S4†) did not
contribute to the authentic versus counterfeit discrimination.

The best PLS-DA model was built with two latent variables
(LV), accounting for 58.52% and 75.86% of the total variance in
the X and y blocks, respectively. Fig. 4A illustrates the predicted
values obtained from the PLS-DA model for the training and
independent test samples. A Bayesian threshold of 0.628 was
estimated and, as can be seen in Fig. 4a, all the samples were
correctly predicted.

The gures of merit estimated for this PLS-DAmodel showed
perfect values. The FNR and FPR were both equal to 0%. The
sensitivity, selectivity and RLR were all 100%, whereas the
AUROC was 1.0. Therefore, this model was able to correctly
discriminate the authenticity of samples from all ten different
perfume brands in the presence of a variety of counterfeit seized
samples.

As previously mentioned in the Introduction, some criti-
cisms have been found in the literature regarding the preva-
lence of discriminant methods applied to authentication
problems.38,39 These authors have pointed out the inherent
difficulties in the acquisition of a sample set representative of
all of the possible types of frauds, limiting the representative-
ness of themodelled adulterated class and the robustness of the
model. An alternative to reduce these limitations is performing
outlier detection combined with PLS-DA models.43 As
counterfeit (green circles) samples are represented by full symbols for
ashed line indicates the estimated threshold for the PLS-DA model,
ng and test sets.

Anal. Methods, 2017, 9, 4979–4987 | 4983



Fig. 5 Informative vectors resulting from PLS-DA (A) regression
coefficients; (B) VIP scores.
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a consequence, future samples very different from the original
modelled variance, which cannot be attributed to the pre-
dened classes, can be detected. Thus, an outlier detection
based on Hotelling's T2 (variance included in the model) and Q
residues (variance le out of the model) was performed for our
PLS-DA model. As can be observed in Fig. S5 (ESI†), no outlier
was detected at the 95% condence level. On the other hand,
the main alternative for discriminant methods is the use of
class modelling methods. In the sequence, a SIMCA model will
be presented.

A one-class SIMCA model was constructed for modelling
authentic perfumes. The best SIMCA model was built with 5
PCs, accounting for 88.96% of the variance. The results for this
model are shown in Fig. 4B, providing only two false positives in
the training set, and two false positives and two false negatives
in the test set. Analytical validation of this model as a whole was
performed by estimating an FPR of 12.9%, an FNR of 6.9%,
a sensitivity of 93.1%, a specicity of 87.1% and an RLR of
80.2%. It is interesting to note that all four false positive
predictions are related to the counterfeit samples of the same
perfume brand (Malbec), while the two false negatives refer to
two different brands of authentic perfumes (Floratta in blue and
Egeo Man) predicted as counterfeits. Considering the possible
use of this methodology for developing a rapid screening
method, the purpose of primarily minimizing false negatives
should be stressed, since detected positive samples can go
further through the conventional reference method (e.g., GC-
MS) for conrmation.

Between the two supervised classication models, PLS-DA
provided better predictions, with no misclassication. The
worse SIMCA results were already expected. As a one-class
modelling method, SIMCA only utilized information origi-
nating from the authentic samples to predict future classica-
tions. This aspect makes the former model more realistic and
robust in relation to new samples of different origins, such as
those produced through new types of counterfeiting. In addi-
tion, it must be clearly stated that any chemometric/
multivariate model is basically a local model. Therefore, our
methodology was constructed for detecting counterfeits of this
specic company (O Boticário), which is the main target of
perfume counterfeiting in Brazil. However, it is possible to
expand the scope of this method by including samples of other
companies in sufficient number and updating the model.

A few papers have reported the attainment of MS ngerprints
of perfumes. Usually the main ions are associated with specic
chemical compounds. This has been reinforced by reason of
trade secrets in relation to the formulations from the cosmetics
industry. Nevertheless, the interpretation of informative vectors
obtained from PLS-DA models allowed improving MS spectral
attributions taking into account the multivariate structure of
the data. Two informative vectors should be emphasised. First,
the VIP (variable importance in projection) scores measure the
importance of each variable in the projection used by the
weights of a particular PLS-DA model, in absolute values.44 In
addition to the VIP scores, a second informative vector should
also be inspected, which contains the regression coefficients.34

For this model, positive regression coefficients were associated
4984 | Anal. Methods, 2017, 9, 4979–4987
with authentic perfumes while negative coefficients were
related to counterfeit samples (Fig. 5A). Complementarily,
variables with VIP scores higher than 1.0 (Fig. 5B) are consid-
ered relevant for the class discrimination. The analysis of
Fig. 5B indicates that the ion of m/z 157 is the most important
for this model, since it presented the highest VIP score.
Simultaneously, this ion showed the largest negative regression
coefficient thus indicating that it is the most important variable
for classifying counterfeit perfumes. The chemical structures of
some of the discriminating ions could be attributed by search-
ing the literature and the results are displayed in Table 2.

The most discriminating ion for counterfeit samples may be
attributed to citronellol (m/z 157).11,45 This compound is
considered of restricted use in the cosmetics manufacturing
industry by the European Union.51 This same regulation also
prohibits the use of the compounds musk ambrette (m/z 269)46

and DEHP (m/z 391)9,46 in cosmetic formulations. Note that the
ion of m/z 269 was associated with counterfeit perfumes in the
model (negative regression coefficient in Fig. 5A).

Damascene (m/z 215),11 acetylcedrene (m/z 269)11 and deca-
methylcyclopentasiloxane (m/z 371)47 are compounds recently
included in the attention list of the Scientic Committee on
Consumer Safety (SCCS).52 Decamethylcyclopentasiloxane (m/z
371) was associated with authentic samples in accordance with
the PCA loadings (Fig. 3B) and PLS-DA regression vector
(Fig. 5A). DNOP (m/z 391),45 although not classied as a banned
compound, is on the list of controlled phthalates by the US
Environmental Protection Agency (EPA).53 Benzophenone-2 (m/z
215)48,49 is a common sun lter used in cosmetic formulations.
The Brazilian National Health Surveillance Agency (ANVISA)
allows the presence of this substance in cosmetic formulations
at a maximum concentration of 10% m m�1.47

The ion of m/z 313 was attributed to ethylhexyl methox-
ycinnamate, a molecule that acts as a sun lter. This is the most
discriminant variable for the classication of authentic
This journal is © The Royal Society of Chemistry 2017



Table 2 Proposed structures of some diagnostic ions detected by PS(+)-MS and highlighted in the informative vectors of the PLS-DA model

m/z Ion species Suggested attributions Perfumery application

157 [M + H]+ Citronellol11,45 Fragrance
215 [M + Na]+ Damascene11 Fragrance

[M + Na]+ Dimethyl benzyl carbonyl acetate (DMBCA)11 Fragrance
269 [M + Na]+ Benzophenone-2 (ref. 48 and 49) UV radiation lter

[M + H]+ 2-tert-Butyl-4,6-dinitro-5 methylanisole (musk ambrette)46 Fragrance
[M + Na]+ Methyl cedryl ketone (acetylcedrene)11 Fragrance precursor

313 [M + Na]+ Ethylhexyl methoxycinnamate50 UV radiation lter
371 [M + H]+ Decamethylcyclopentasiloxane47 Solvent
391 [M + H]+ Bis(2-ethylhexyl)phthalate (DEHP)9,46 Solvent/xative

[M + H]+ Di-n-octylphthalate (DNOP)46 Solvent/xative
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perfumes, since it presented the largest positive regression
coefficient and the second highest VIP score (Fig. 5). In general,
most of the compounds listed in Table 2 and related to the
counterfeit samples could be linked to possible allergic reac-
tions. This observation reinforces the concern about health
problems caused by counterfeit perfumes.

Besides the suggestions of attributions shown in Table 2,
other ions were important for discrimination. In addition to the
ions of m/z 313 and 371, ions of m/z 223, 239, 299, 467 and 575
presented higher VIP scores and larger positive regression
coefficients (Fig. 5). Therefore, these ions were directly related
to the classication of authentic perfumes and can be consid-
ered potential markers or diagnostic ions. This was corrobo-
rated by their negative loadings in the PCA model (Fig. 3A). The
ions of m/z 349 and 547 presented higher VIP scores and larger
negative coefficients. Thus, these two ions can also be consid-
ered potential markers of counterfeit perfumes.

The series of ions detectable in the mass range of m/z 600–
1000 in the mass spectra of both authentic and counterfeit
samples suggests the presence of a polyethoxylated polymer as
a constituent of the perfumes. These ions probably refer to
sodium/potassium adducts of polyethylene glycol (PEG). The
presence of polyethoxylated polymers have been reported in the
literature, suggesting an excessive utilization of PEG as an
emulsier in formulations of low quality perfumes.6 The high
intensity of these ions in the mass spectra of the counterfeit
perfumes indicates the use of an excessive amount of this raw
material during the manufacturing of such types of samples.
These ndings thus reinforce the complete disinterest of some
counterfeiters in manufacturing a product with a minimally
desirable quality.

Finally, potential attributions of the most discriminant ions
were limited by the utilisation of a low resolution mass spec-
trometer. For performing more accurate and complete attribu-
tions, a high resolution mass spectrometer is denitely
required.
Conclusion

A novel and direct method was developed by the combination of
PS-MS and multivariate supervised classications with PLS-DA
and SIMCA for the differentiation between authentic and
This journal is © The Royal Society of Chemistry 2017
seized counterfeit perfumes. This method was simple and
rapid, with the analytical procedure being less than one minute
per sample. In addition, no sample pre-treatment was required
and insignicant amounts of solvents were consumed. The
models were developed exclusively with samples from only one
producer (O Boticário), the largest cosmetics group in Brazil,
and the main target for perfume counterfeiting. Both models
are robust and were generated with 60 samples from 10
different brands and distinct batches. In spite of the great
variance included in the models, both chemometric methods
were able to yield high rates of correct classication for the
samples in the training and test sets.

Another important aspect of this work was the possibility of
detecting the ions (variables) that contribute most to the correct
classication. It is important to highlight that the most abun-
dant ions in the original MS spectra are not necessarily the most
discriminant variables. Diagnostic ions for authentic and
counterfeit perfume samples were proposed based on the
interpretation of the informative vectors (VIP scores and
regression coefficients) obtained from the PLS-DA model. Some
of the diagnostic ions for counterfeit perfumes were suggested
to be compounds of allergenic potential, reinforcing the health
risks for consumers of these counterfeit products. Studies on
other perfume brands are underway in our laboratory.
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